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The absorption of high-intensity radiation, by the inverse bremsstrahlung process, has been studied. The 
results are significantly modified, compared to the results of perturbation theory, when the parameter 
e2E2/mhco3 becomes comparable to or greater than unity. Here E is the strength of the radiation electric field 
of frequency w. It is found that the absorption cross section changes from an inverse seven-halves-power de
pendence on frequency for small values of the parameter, to direct proportionality for large values. Further
more, for large radiation fluxes, the cross section varies inversely as the three-halves power of the flux. 

I. INTRODUCTION 

INVERSE bremsstrahlung refers to the process in 
which an electron absorbs radiation as it scatters 

in the Coulomb field of an ion. Theoretical studies of 
the bremsstrahlung process have included the assump
tion that the interaction of the electron with the radia
tion field may be treated by lowest order perturbation 
theory.1 In the very early treatments it was also as
sumed that the electron is sufficiently energetic, both 
before and after absorption of radiation, that the 
electron-ion scatter may also be described by lowest-
order perturbation theory. Subsequent efforts have 
permitted this latter condition to be relaxed by includ
ing the use of more exact Coulomb wave functions.2,3 

The introduction of lasers4 into current technology 
has produced an interest in the nonlinear interaction of 
radiation with electrons. A considerable effort has been 
expended in predicting corrections to the Thompson 
formula for the scattering of radiation from a free 
electron, by including multiple photon transfer proc
esses.5-7 The corrections to previous results have been 
found to be extremely small, even for the most intense 
radiation fields available; the expansion parameter for 
the free-electron scattering process may be written in 
the form5-7 

(eE/nuac)2, 

where E is the electric field intensity for the radiation 
field of frequency ca, e, and m are the electron charge and 
mass, and c is the velocity of light. It is clear that the 
strong field correction is essentially a relativistic effect. 

Recently, von Roos and others8-10 have been quite 
successful in extending to atomic systems, techniques 
used in plasma studies. In these works, the statistical 
nature of the atom is emphasized, so that the starting 
point has been the Thomas-Fermi model, and use is 
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4 T . H. Maiman, Nature 187, 493 (1960). 
8 Z. Fried, Phys. Letters 3, 349 (1963). 
6 L. S. Brown and T. W. B. Kibble, Phys. Rev. 133, A705 

(1964). 
7 Vachaspati, Phys. Rev. 128, 664 (1962); and 130, 2598 (1963). 
* O. von Roos, Phys. Rev. 119, 1174 (1960). 
9 O. von Roos and J. S. Zmuidzinas, Phys. Rev. 121, 941 (1961). 
10 P. H. Levine and O. von Roos, Phys. Rev. 125, 207 (1962). 

made of a quantum-mechanical analog of the Vlasov 
equation.11 Quantum correction to the Thomas-Fermi 
model, due to both exchange effects and strong potential 
gradients, are obtained in this manner. In our work, we 
will extend certain techniques used in plasma studies to 
the problem of a single electron which interacts with 
radiation. 

It is of interest to consider the strong-field parameter 
associated with the inverse bremsstrahlung process, in 
order to determine the magnitude of the correction 
which we will consider in this work. This may be done 
by observing, from a classical point of view, how the 
nonlinearity arises. In the presence of the radiation field, 
an electron undergoes oscillation, with peak velocity 

Uo=eEo/mo), 

where E0 is the peak value of the electric field strength. 
If uo is comparable to the initial electron velocity vo, 
then this initial velocity loses its previous significance. 
Of greater interest is what happens when \mu$ exceeds 
ha. Then regardless of the initial electron velocity, the 
electron acquires sufficient energy, by interaction with 
the radiation field, such that it may emit photons. This 
is clearly a nonlinear effect, since the field has given the 
electron the energy which allows it to modify the field. 
The parameter which we seek, therefore, is 

muo2/2ho) ~ e2Eo2/mhco3. 

From the quantum-mechanical point of view, a non-
negligible magnitude of this parameter assures the im
portance of multiple photon transfer. For a 1012 W/cm2 

laser beam of infrared, with an angular frequency of 
co= 1015 sec"1, the magnitude of the parameter is of the 
order of unity. In this work, we consider how the 
absorption process is modified with these strong fields. 

It will be assumed that relativistic effects are un
important, that is, the initial electron energy |w^o2, the 
photon energy ha, and the energy acquired by inter
action with the field, %tnuo2, are all assumed to be small 
compared to the electron rest energy. Furthermore, 
classical theory will be used whenever it is applicable. 
For example, since electron recoil velocities are non-
relativistic, the radiation field may be treated classically 
without introducing a further approximation. Further-

11 A. Vlasov, J. Phys. (USSR) 9, 25 (1945). 
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more, the ion, which provides the background field in 
which absorption may occur, is much heavier than the 
electron. Therefore, ion recoil may be neglected, and 
the ion motion may therefore be treated classically; the 
resulting error is of the order of the electron-ion mass 
ratio. The electron motion is of course treated quantum 
mechanically. Finally, the electron-ion scatter will be 
described by the Born approximation. The use of free-
state wave functions in lieu of Coulomb wave functions 
renders the mathematics considerably more tractable. 
Thus the electron velocity is, at all times, required to 
exceed greatly the quantity eq/h, where e and q are the 
electron and ion charges, respectively. 

We now describe the method of solution. In the 
center-of-mass coordinate system, the ion is effectively 
stationary, whereas the electron motion is extremely 
complicated. For example, the electron velocity is com
posed of three parts: the initial velocity; the increment 
attained by scattering in the ion field; and the oscillating 
component which results from interaction with the 
radiation field. In order to reduce the complexity of the 
electron motion, we transform to an oscillating coordi
nate system, so that it appears as if the ion is oscillating 
while the electron is unaffected by the radiation field. 
Now the ion produces a time-dependent field in which 
the electron scatters; in that sense, the simplification is 
somewhat illusory. We will refer to this latter coordinate 
system as the oscillating system, to distinguish it from 
the center of mass system. 

In the oscillating system, the electron wave function, 
in the presence of the ion field, is time-dependent. Since 
the ion motion is classical, we may use the classical 
concept of force when referring to the ion. We conjec
ture that, the electron wave function being time-
dependent, it transmits a reaction force to the ion. From 
the usual point of view, this force on the ion is merely 
due to an electron-ion scatter. But we can also consider 
this force from a somewhat different point of view. 

Let us interpret the electron wave function \f/, such 
that e^V represents an extended distribution of charge, 
which can support the propagation of longitudinal 
waves. The ion, oscillating in this medium, is a source 
of such waves. Since longitudinal waves carry energy; 
there is a reaction force associated with the emission 
of these waves by the ion. I t is asserted that the force 
on an ion, calculated in this manner, is identical with 
the force associated with a particle-particle scatter. 

We will denote the reaction force on the ion by F. In 
the oscillating coordinate system, the time rate of 
energy which the ion absorbs from the radiation field is 
F*u, where u is the ion velocity. We are really interested 
in the time-rate of energy absorption by the electron in 
the center-of-mass system. If the electron were a classical 
particle, then since Coulomb forces obey the law of 
action and reaction, the force which the ion exerts on 
the electron must be identical with the force which the 
electron exerts on the ion F. The semiquantum state

ment of Newton's third law is that the time rate of 
momentum transfer from the ion to the electron is equal 
to F. Similarly, the quantity F«u is the time rate of 
energy transfer from the ion to the electron. 

Now the only reason that the ion transfers energy to 
the electron is that the ion is caused to oscillate by the 
radiation field. A static Coulomb field can result in no 
energy transfer. We conclude, therefore, that F»u is the 
energy which the radiation field transmits to the 
electron, by using the ion as an intermediary. But this 
quantity is what we seek; dividing it by the incident 
radiation flux per unit area yields the absorption cross 
section. 

By using the technique described above, it is possible 
to treat the interaction of radiation with the electron 
to all orders in the field strength. In the next section, a 
general expression is obtained for the energy transfer. In 
the third section, this expression is reduced in the limits 
of weak and strong fields, respectively. I t is shown that 
the extreme weak field limit is identical with the results 
of perturbation theory. 

II. ENERGY TRANSFER 

Let &(t,r) be the electron wave function, so that e^V 
represents its charge distribution. Similarly, let qS(t,r) 
be the ion charge distribution. The potential field, 
<p(t,i), produced by both particles, is obtained from 
Poisson's equation, 

VV = 47re^V-47r^(/ , r ) . (1) 

We now consider the quantities to be substituted into 
the right-hand side of this equation. 

The electron wave function is obtained from the 
Schrodinger equation, 

ih^H^p-e^] HQ^p2/2m, (2) 

where the potential <p of Eq. (2) is the solution of Eq. 
(1). Note that the electron contributes to the potential 
field which acts back on the electron. Aside from result
ing in self-energy effects, for an extended electron dis
tribution, this procedure insures the collective effects 
needed for the propagation of longitudinal waves. 

In order to solve Eq. (2), <p(t,t) is treated as a per
turbation. We have already agreed to treat the static 
Coulomb field by perturbation theory. But <p represents 
a time-dependent Coulomb field, which is modified by 
the presence of an electron distribution. Comparing <p 
with the static Coulomb field, it is clear that the 
presence of the electron can only weaken the perturba
tion, since the sign of its charge is opposite to that of 
the ion. Furthermore, the time dependence, produced 
solely by the ion motion, cannot induce a sizeable 
perturbation, except during those rare periods when the 
ion velocity is very nearly equal to the electron velocity. 

The solution of Eq. (2) may be obtained in theBorn 
approximation, in terms of the field <p, without 
specifying the field. The perturbation in the electron 
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distribution, 
p'^r^oV'+W'*, (3) 

may then be calculated. The unperturbed part of the 
distribution, po=^oVo, is independent of time, and is 
therefore unrelated to our problem. 

When the solution of Eq. (2) is substituted into the 
time-space Fourier transform of Eq. (3), we obtain 

p,(J2,k) = ( ^ ( 0 , k ) / L 8 ) { [ E ( p o + * k ) - £ ( p o ) - « 2 ] - 1 

+ [ £ ( p o - ^ k ) - E ( p 0 ) + ^ ] - 1 } , (4) 
where 

p'(G,k) = / p'(/,r) exp(iQt-ik-r)dtd'sr (5) 

is the transform of the perturbation in the electron 
distribution, <£>(0,k) is the corresponding transform of 
the field <p(t,t), U is the normalization volume for the 
electron of initial momentum po, and 

£(po) = Po2/2m (6) 

is the electron energy. When expression (4) is sub
stituted into the time-space Fourier transform of 
Poisson's equation (1), we obtain as the solution for the 
field, 

^(fl,k) = 47rg[5(J2,k)/Z>(0,k)], (7) 

where 

JD(0,k) = * 2 + ( 4 7 r 6 2 A 8 ) { [ ^ ( P o + * k ) - £ ( p o ) - ^ ] - 1 

+ [ E ( p 0 " f t k ) - £ ( # o ) + « 2 ] - 1 } , (8) 

and 5(0,k) is the transform of the ion source term, 
S(t,r). We now consider this term. 

The ion wave function \1> must satisfy its own 
Schrodinger equation. To lowest order in the electron-
ion interaction, we may neglect electron reaction effects. 
The corresponding Schrodinger equation for an ion in 
the radiation field is 

. 1 / e \ 2 

ifr$r = p A j t f , (9) 
2M\ c J 

where M is the ion mass, and A is the radiation vector 
potential. Since electrons (in the center-of-mass system) 
are not accelerated to relativistic velocities, we may 
treat the radiation field in the electric dipole limit. For 
example, the radiation vector potential may be written, 
quite generally, in the form 

A = (Mca)/e)to s in (cat— K • x ) , 

where r0 is defined, for convenience, such that (Mcoo/e)r0 

is the amplitude of the vector potential, and K is the 
radiation wave number (to be distinguished from the 
longitudinal field wave number k, to be introduced 
later). The dipole approximation in the radiation field is 
valid if Kx<^\, where x describes the region of the charge 
distribution. Since TQ is the maximum displacement of 

the charge from its equilibrium position, the condition is 

to eEo MQ 
Kr0= — « 1 , 

c moo2 c 

in accordance with our assumption that electrons are 
not accelerated to relativistic velocities by the radiation 
field. Corrections of order uo/c are much smaller than 
the corrections to the Born approximation which are 
obtained in this work. I t should be pointed out that 
multipole transitions are important in determining 
the corrections to Thomson scattering since all correc
tions to that process are relativistic, of the order (uo/c)2. 
In our approximation, however, the vector potential 
depends only on time, and is given by 

A = (Mcco/e)r0 sinotf. (10) 

The solution of Eqs. (9) and (10), for the wave function 
corresponding to an ion with initial momentum p1? is 

f Pi £«(pl) PiTo 
^i = L~*<2 e x p j i—x—i t—i coscot 

I ft ft fi 

Mwr0
2 } 

- i [cot-i sin(2co*)] , (11) 

U J 

where D is the normalization volume and 

£.(pO = Pi2/22f (12) 
is the ion energy. The quantity which corresponds to the 
classical density function, for a particle in quantum 
state ^ i , is given by 

U r 
S(t,t) = j : *m**i = / ¥ m * 3 M % , (13) 

(2irhY J 

where the summation is replaced by an integration over 
all momentum eigenstates of the system. By substitut
ing expression (11) into (13) we find that the Fourier 
transform of Eq. (13) may be written 

5(12,k) 

r \i } 
= I exp | - [E , (p i -^k)—E,(p i )+M2] /—fkT 0 (0 \dt 

J-oo [ft J 

= / expjif 0—k-V+—J/-;k-r0(/) \dt, (14) 

where V is the initial velocity of the ion and r0(/) 
= r0 coso)t. This last expression will often be written as 
r0(0, since many of the results are valid when the radia
tion field has a distribution of frequency components. 

In order to obtain the classical distribution, we drop 
the term (hk2/2M)t from Eq. (14). Then spreading of 
the ion wave packet is ignored. When typical wave 
numbers k, corresponding to emitted longitudinal waves 



B234 S. R A N D 

are obtained, it may be shown that the resulting error is 
of the order of the electron-ion mass ratio. Furthermore, 
we will assume that the ion is initially at rest, and set 
V=0 . Then Eq. (14) is reduced to 

w-/ S(Q,k)= / exp{ittt-ik-r0(t)}dt (15) 

which is to be combined with Eq. (7). 
The electric potential <p(0,k) describes the amplitude 

of longitudinal waves emitted by the ion. According to 
Eq. (15), ro(t) defines the position of the classical ion 
at all times. Therefore, the reaction force on the ion, due 
to the emission of these waves, is given by 

F(0 = - g v ? ( * , r o ( 0 ) = - n k^(ft,k) 
(2rr)4. 

X e x p { - ^ + f k T o ( 0 } * ^ 8 * . (16) 

By substituting Eqs. (7) and (15) into (16), we obtain 

F ( / ) = - i - dtf dQ 
4TT 3 

/• k e x p { i l 2 ( / r - - / ) - * • [ r 0 ( O - r 0 ( 0 ] } 
X / - — d*k, (17) 

J 0(Q,k) 

where Z>(J2,k) is given by Eq. (8). To obtain the force, 
the real part of Eq. (17) must be taken. 

For a sinusoidal radiation field, we have ro(0 
= rocoso>J. Thus factors of Eq. (17), of the form 
exp{ik«rocoscoj}, may be expanded in terms of Bessel 
functions, /n(k«ro). We then find 

F(0 = -

X 

47T2 m,n=—oo 

k/ n (k-r 0 ) / m (k-ro) 
{D^(no),k)e^m~n)ut 

\D(no),k)\2 

- (-l)n+mD(nG>,k)e-i(>m--n)»t}dzk, (18) 

where the real part of the function has been taken. A 
complete knowledge of the force, along with its time 
dependence, would enable us to obtain the radiation 
phase shift on scattering, as well as the absorption. An 
inspection of Eq. (18), however, indicates serious mathe
matical difficulties. We will, therefore, limit our study 
to absorption. Furthermore, for radiation frequencies of 
interest to this work, no measurements can be made in 
less time than a period of the wave. We need, therefore, 
consider only the quantity 

where 
fr=<F.u), (19) 

u (t) = drQ (t)/dt = — coro sinojt (20) 

is the ion velocity, and the brackets indicate that we 
take a time average over a period of the wave. By 
combining Eqs. (18) and (20) with (19), we get 

q2o) * r /n
2(k'ro)D(#co,k) 

U= I m X) n \ 
7T2 n-i J \D(no),k)\2 

4*k. (21) 

Since the electron is distributed over a large volume, the 
term k2 in Eq. (8) for Z)(ft,k) is by far the largest term. 
Therefore, to lowest order, we may replace D(nco,k), in 
the denominator of Eq. (21), by k2. The result is 

q2o) d*k 
U= I m l » Jn

2(k-r0)D(no),k)—. (22) 
7T2 n=l J & 

By inspection of Eq. (8), we find that ImD(S2,k) is 
still not completely defined. Since Im( l /# ) = dbwd(x), it 
is still necessary to prescribe the contour around the 
poles in order to obtain the proper signs. From causality 
arguments, we assert that the poles are defined such that 

4TTV 
ImJD(ft,k) = {6(E(vo+fik)-E(po)-m) 

IJ 

~ 5 ( E ( p o - * k ) - £ ( p 0 ) + «2)} . (23) 

The quantity ReJ9(£2,k) plays a part in phase shift 
studies, but is not involved in the absorption process. 

In order to simplify the mathematics, we will assume 
that the radiation propagates in the direction of the 
initial electron momentum, po= wvo. Then by symmetry 
the result must be independent of the direction of 
polarization, r0. For this problem we find by substituting 
expression (23) into (22), and performing one angular 
integral over the d functions, 

U=-
&e2q2ai *> r dk r 

Z n / - / Jn 

LzhvQ n=i J kz J 
ikron) 

/no) fok \2 -p1 /2 
( f /no) nk \ 

i - ( j 
IL \kv0 2mvo/ 

( no) fik \2 ~l —+—)-„* 
kvo 2mvo/ J 

-1/2 

d», (24) 

where the limits of integrations include all regions where 
the integrand is defined. For example, when integrating 
over the first term in the curly brackets, the integration 
limits on k include values of k such that 

( no nk \ 

kvo 2mvJ 
< i . 

The corresponding limits are 

2 ^ a V / 2 
mvo[" / 2nho)\1/2 ~] 

ki= ( l + ) ± 1 . (25) 
fi LA mvo2 / J 
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The limits for the second term in the curly brackets are section 

2nfio)\ll2~] mv0r / 2nn<jQ\ 
= l d z f l - ) 

ft L \ mvo21 

8ir2e4q2Pi 
(26) 

/(i+xy2+i 

For terms in the sum, such that nho)>^mvo2, the second 
term of Eq. (24) does not appear. The limits on the p, 
integrations are 

/ M A ± r fno)_ ^ ° \ 

V/X2/ ± L \kv0 2mvJ 

1/2 

(27) 

The first term in the curly brackets of Eq. (24) is 
interpreted as describing, for a given n, the net absorp
tion over induced emission, of n photons from the radia
tion field. The second term corresponds to the net 
induced emission over absorption of n photons. 

The absorption cross section for inverse brems-
strahlung is related to U, as given by Eq. (24), by 

8TT 8Te2piL* 
<r = L*PlU= U, (28) 

where CEQ2/8T is the incident energy flux. The factor 
Dpi must be included in order to undo the arbitrariness 
of having normalized the electron wave function in the 
volume Z,3. The ion density is used rather than the 
electron density because, in the center-of-mass coordi
nate system, the electron is the source particle for 
longitudinal waves, rather than the ion. For the same 
reason, we have written the ion displacement in the 
radiation field as 

r 0 = - e E 0 / W , (29) 

where m is the electron mass. 

III. LIMITING CASES 

By observing the limits of integration of Eq. (24), as 
given by Eqs. (25) and (26), we see that there is a 
distribution of wave numbers associated with the 
longitudinal waves. We will first assume that for all 
such values of k, we have 

krQ«l. (30) 

Then we need retain only the n—1 term in the series of 
Eq. (24). Furthermore, the Bessel function may be 
reduced to its limiting value 

Ji(krofjL)~%krojji. 

In the weak field limit described here, the integrations 
of Eq. (24) may be performed immediately. By combin
ing the result with Eq. (28), we have for the cross 

hcm2ooho 

where 

. A_(i+a.)i/*l 

(,-iMl=H=S5)-(,-*H • 
a < l , (31) 

x^2hcc/mvo2. (32) 

For x>l, the second term of Eq. (31) is discarded. In 
this extreme limit, since only a single photon is involved, 
the processes of absorption and induced emission are 
separable. For any higher order terms, this is no longer 
the case. Equation (31) is identical with the result 
obtained from the perturbation treatment of the non-
relativistic inverse bremsstrahlung process, when the 
radiation propagates in the same direction as the 
electron velocity.12 I t is not difficult to show that, for 
kro<Kl, Eqs. (22) and (23) agree with previously quoted 
results for arbitrary directions of propagation. 

If we include one higher order in TQ2, so that two 
quantum processes are possible, we obtain as the correc
tion to expression (31) 

where 
0-=(7o+(/, 

8w2e4q2pi/mvQro\2( 3 [" 

hcm2o)h0\ h J 

3 r / *\ / ( i + * ) 1 / 2 + i \ 
- U 2 l + - ) l n ) 
32L \ 2/ Vd+x ) 1 / 2 - ! / 

4 4" 
-#2(1+*)1/2—(l+x)3'2+-

3 3 . 

3 r 

161 
# 2 ( l + x ) l n ( -

\{\+2x) 1/2 _ T) 
1 l-

- x 2 ( l + 2 x ) 1 ' 2 — ( l + 2 x ) 3 ' 2 + -
3 3. 

(31') 

for x>l. For f < x < l , a term identical with the first 
term in the brackets, but with x replaced by —x, is sub
tracted from this expression. For x<^, both brackets, 
with x replaced by —%> are subtracted. 

We now consider the alternate to condition (30), 
that is, 

M ) » l . (33) 

Rather than attempt to evaluate expression (24), which 
may involve many terms in the sum, we return to 
Eq. (17). According to Eq. (33), we see that the 
integrand of Eq. (17) is rapidly oscillating, except over 

12 W. Heitler, The Quantum Theory of Radiation (Oxford 
University Press, London, 1954), see Chap. V, p. 242. (In order 
to obtain precise agreement, Heitler's study must be modified 
slightly to include the inverse process.) 
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a very small distribution in angles of k, which may be 
neglected, and except in the region t'^t. Therefore, we 
perform a Taylor expansion, 

r 0 (0 - ro (* ) = u(0 (/ '-*) 

1 du 1 d2u 
+—{t'-ty+—(t-ty+--. (34) 

2dt 6 dt2 

We need retain only the first two terms in this expansion 
if 

k-(d2u/dt2)(?-ty«i 
when 

k-(du/dt)(t'-t)2~l. 

Except for that small range in angles, referred to above, 
we find that condition (33) ensures that the first two 
terms in the expansion of Eq. (34) are sufficient. There
fore, Eq. (17) is reduced to 

F(0 = -
Air - 0 0 *f — C 

d£l 

•kexp{i(tt-k-u)(t'-t)-Uk'(du/dt)(t'-t)2} 
X / d?k. 

D(Q,k) 
(35) 

After performing the integration over /', and changing 
the variable of integration from Q to x, by 

tt=k-u+(k-du/dt)ll2x, 

we have 

F(ty- -i—(2xi)x'2 

4x3 
^Hx 

J Z>[k-u 

kd*k 

D\\-n+(k-(du/dt)yi%k'] 
(36) 

Recalling again, that according to Eq. (8), k2 is the 
dominant contribution to Z>, Eq. (36) may be replaced 
by 

F(t) = i—(2xi)1'2/ e^i*dx 
4TTS 

< / X kD 
du\^2 

dt) 
k » u + ( k — ) x,k 

\d*k 
(37) 

To lowest order in (k*ro)-1, we may neglect the accelera
tion term, (k*du/dt)1/2x, in the argument of D. Then we 
find by substituting Eq. (23) into Eq. (37), that 

After performing the integrations and combining the 
result with Eqs. (19) and (28), we have the result 

32w2eYpi/u2-u>v0 rk*dk 

cm 

se4<n>*/w u ' v o f °dk\ 

b W \ | u ~ V o ] 3 i * / 
where 

£o= (2m/h)\u~\0\ 

(39) 

(40) 

The lower limit of integration of Eq. (39) is, according 
to this approximation, ^ m i n =0 . Of course, by condition 
(33), this approximation becomes invalid for k<l/ro. 
Furthermore, retention of the acceleration term in 
Eq. (37) will provide a lower limit cutoff on k. For 
example, we have from Eq. (37), with Vo=0 and du/dt 
in the same direction as u, 

F(0=-
2e2q2 

-i (2Ti)]!2u 
hUu 

^Hx 

X 
dk r1 [I hk fax\li2 \ 

- M[n + ( — ) Ul1 / 2 

k2 i _ i I \ 2mu \ku2J I 

- 5 ( / x + + ( — ) I M | 1 / 2 ) U M , (41) 
V 2mu \ku2/ / ) 

where a = | du/dt | and u is a unit vector in the direction 
of u. With condition (33), the upper limit on the inte
gration over k, obtained by setting the argument of the 
5 function to vanish, with AI= ± 1, is virtually unchanged 
from the value ko=2mu/h. The value of the two inner 
integrals of Eq. (41) is, in limits, 

hk/2mu, 

k2^>max2/2hu 

(hk/mu) (huk2/2max2), 

k2<Kmax2/2hu. 

Thus there is a fairly sharp cutoff at 

k^(ma/2hu)1/2x, 

and this value, with x= 1, may be taken as km{n in the 
integral of Eq. (39). When Vo^O, there is a small 
logarithmic correction which results from modification 
in the cutoffs. 

In order to allow a comparison between Eqs. (39) for 
kr^>l and (31) for M ) « l , we set u_l_v0 with the 
approximate result 

for 

and 

for 

F0 — 
2e2q2 

/ k | / f t k - ( i i -
h2k2\ 

v0) ) 
2m / 

I6ir2e2 q2 pi 

< :mEo2 \(U2-\-VQ2)B 

/Smu\ \ 

;Kir)>- (42) 

/ h*k\) d*k 
- 8 ( * k - ( u - v 0 ) + J — • 

\ 2m JI £4 
(38) 

The time dependence, to be averaged over, occurs 
primarily through the velocity, 

u— (eEo/mco) sinco/. 
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A particularly interesting situation occurs for 
%tnvo2<^ko). Then we find that if %ntu2<^hw, the cross 
section is given by the expression (31) and (310, with 
a££>l. The result is 

S27r2eYpi f 9 / l\e2£0
2 } 

<r= (m/2M1 /2 1 ( 1 ) + ' • ' > 
3hcm2^ { 32\ yJlJmfi^ J 

e2E,2 

<<1. (43) 
mfico'6 

I. INTRODUCTION 

THE present experiment was originally undertaken 
to take advantage of the availability of arti

ficially produced beams of energetic electrons for the 
limited purpose of "calibrating" balloon-borne cloud 
chambers that had been used to study cosmic-ray 
electrons. However, it soon became apparent that some 
of the results obtained were of sufficient general interest 
to warrant their presentation in this report. 

Although existing experimental and theoretical 
studies have led to a clear understanding of the nature 
and major characteristics of cascade showers, detailed 
knowledge of showers developing in materials of high 
atomic number is needed because such showers provide 
a useful tool for determining the identity and energy 
of the initiating electron or photon. It is generally con
ceded that analytic shower theories1 yield a useful and 
essentially correct representation of shower develop-

* Supported by U. S. Office of Naval Research under contract 
Nonr-710(19). 

f Present address: Department of Physics, California Institute 
of Technology, Pasadena, California. 

1 Summaries of the results of shower theory appear in: B. Rossi, 
High Energy Particles (Prentice Hall, Inc., New York, 1952); 
and K. Greisen, The Extensive Air Showers, in Progress in Cosmic 
Ray Physics (North-Holland Publishing Company, Amsterdam, 
1956), Vol. I l l , pp. 1-141. 

For ^mu2^>hco} we have by Eq. (42) 

l67reAq2piO) / eE0 \ /64:mvohEo\ e2EQ
2 

- In ) In , » 1 . (44) 
c(eE0y \muvj \ h2o^ J mfto)'6 

It is predicted therefore, that with sufficiently strong 
radiation fluxes, and with the condition ^rnv<?<£fia), the 
absorption cross section will decrease roughly as the 
three-halves power of the flux. As the intensity is 
increased, the frequency dependence goes from inverse 
seven-halves power to direct proportionality. 

ment in materials of low atomic number, but the 
analysis of showers in high-Z materials is complicated 
by the intractability of mathematical expressions for 
the low-energy cross sections of elementary shower 
processes and by uncertainties arising from the pro
nounced effects of multiple scattering on low-energy 
shower particles. These difficulties have been cir
cumvented to a certain extent by Monte Carlo calcula
tions based on exact expressions for the cross sections,2-5 

but even these calculations yield no information on the 
number of particles present with energy below an 
arbitrary low-energy cutoff which must be introduced 
to limit the extent of the computation. Unfortunately, 
published experimental data on showers in high-Z 
materials,6-11 while extensive, are so disjointed that 

2 R. R. Wilson, Phys. Rev. 86, 261 (1952). 
3 D . F. Crawford and H. Messel, Phys. Rev. 128, 2352 (1962). 
4 H. Messel, A. D. Smirnov, A. A. Varfolomev, D. F. Crawford, 

and J. H. Butcher, Nucl. Phys. 39, 1 (1962). 
6 C. D. Zerby and H. S. Moran, J. Appl. Phys. 34, 2245 (1963). 
6 S. Nassar and W. E. Hazen Phys. Rev. 69, 298 (1946). 
7 W. Blocker, R. W. Kenney, and W. K. H. Panofsky, Phys. 

Rev. 79, 419 (1950). 
8 C. A. D'Andlau, Nuovo Cimento 12, 859 (1954). 
9 W. E. Hazen, Phys. Rev. 99, 911 (1955). 
10 H. Xengeler, M. Deutschmann, and W. Tejessy, Nuovo 

Cimento 28, 1501 (1963). 
11 R. Kajikawa, J. Phys. Soc. Japan 18, 1365 (1963). 
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The average number and the energy spectrum of shower electrons present under various thicknesses of 
lead were obtained with the aid of multiplate and magnetic cloud chambers. The relation between observed 
track length and incident electron energy was found to be 

incident energy (MeV) = (23.6± 1.6) X track length (radiation lengths). 

The observed number of shower electrons with energy greater than 10 MeV is in good agreement with that 
predicted by recent Monte Carlo calculations; however, low-energy electrons (not included in the calcula
tions) were found to be a large fraction of those present at large depths. Measured probabilities pn that 
exactly n electrons emerge from the lower surface of a 0.75-radiation-length lead plate when one electron is 
incident from above are given as a function of incident electron energy. 
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